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MAXTMUM LIKELIHOOD IDENTIFICATION OF
STOCHASTIC LINEAR SYSTEMS
R. L. Kashyap
Abstract
The paper deals with the maximum likelihood (ML) estimation
of the coefficients of a discrete linear system described by
a set of coupled difference equations either from the inpubt-output
data or from the output data alone. The input and measurements
may be noisy. The methods may be noisy. The methods also
estimate the_covariances of the disturbing noise. Moreover,
the schemes can be modified to allow for real time operation;
but the estimates are no longer ML except in the asymptotic

sense. Computationél results are giver for a third order system.



I. INTRODUCTION

This paper deals with the identification of the parameters
of a discrete stationary stochastic linear system from noisy input-
cutput measurements {v(i),z(i)), i=1,2,...} or from output data
{2(i),i=1,2,...} alone. It is more apt to say that the paper
considers the fitting of linear models for the observed data since
there may not be suéh a thing as a linear stochastic system which
campletely specifies the probabilistic enviromment under considera-
tion. The criterion function chosen for fitting the linear model
to the given data must reflect the ability of the model to perfomm
tasks like prediction for which the‘model is usually used.

Any model building problem is intimatély connected with the
volume of the available data. In some problems the number of
available measurement pairs {v(i),z(i)} is limited. This limitation
arises naturally when a cost is attached to the experiment for
determining each input-output pair {v(i),z(i)}. In other problems,
the amount of measurements available may be infinite. When the
available number of measurements is limited, one is interested
in computing the optimal estimates of the unknown parameters
including the noise variance like the maximum likelihood estimates.
In such circumstances, one is interested only in computing
the estimates in an efficient manner and not necessarily
in "real time" computation. But when the amount of data
available is growing in time or is infinite, there is a

need for developing "on line" computing schemes which can
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update the estimate every time an additional piece of data comes in.
For example, such problems arise naturally in the determination of
optimal filters with noises of unknown statistics. In such problems,
the estimates are expected to approach their true values as the
amount of data handled tends to infinity.

When the number of available measurements is finite, say N,
the criterion function Jﬁ(A) used for determining the parameters

*
specified by matrix A, with true value A, is given below:

N
1 ' R o 2 1
JN(A) =5 EHZ(I) - z(1;A)“ 1, T m ‘R(A)‘
. R ~(A)
i=1
where
z(i;A) = predicted linear least squares estimate of z(i)
based on all previous measurements z(j),j < i, the
imputs and the parameter A.
e(iA) A 2(i) - z(i;A) = error in prediction

R(A) = E [e(i;a) e (i34)]

covariance matrix of the prediction error.

The error e(ijA), also known as the innovation, obeys a
linear difference equation with z(i) as the forcing function and
whose coefficients are functions of A. Thus the estimation problem
is reduced to the solution of a standard parameter minimization
problem with difference equations as constraints. We refer to
Figure 1 for the identification configuration.

When the disturbances are Gaussian, exp [-JN(A)] is the likeli-
hood function so that the estimate of A obtained by minimizing

JN(A) with respect to A is the maximum likelihood estimate of A.
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As a result, as N tends to infinity, the estimate of A tends to A*
almost surely. Moreover, it is possible to get a measure of the
variance of the estimate with the aid of cramer-Rao lower bound [12].

When the number of measurements 1s growing with time, the algo-
rithms mentioned above can be modified to make "on-line" computation
of estimates possible.

At this stage, the available results on this problem may be
briefly mentioned.

There are three principle methods of identification which are
(1) the linear least square (LLS) methods of Kalman [1], Levin [2],
Stiglitz and Mcbride [3]; (2) the instrumental variable (IV) methods
of Joseph, Lewis, and Tou [4] and Wong and Polak [5]; (3) the
stochastic approximation and related techniques (SA) of Ho and Lee [6],
Sakrison [7], Oza and Jury [8]. All of them treat only scalar
difference equations, although some of them like SA methods can
be extended for multiple input-output systems. All of them estimate
only the parameters of the difference equation and not the covariance
of the associated noises. Moreover, both the LLS and SA techniques
need a knowledge of the noise covariances whereas IV methods cannot
tolerate input disturbances. All of them require knowledge of both
input and output measurements. Except in IV methods, the
estimates obtained with limited number of measurements are very

poor unless the initial guess is close to the true value.

II. THE MODEL OF THE RANDOM PROCESS
The r-vector output process y(i) is related to the r-vector

input process u(i) by the following set of coupled difference
F

equations.
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y(i) + Aly(i~l) + .. + Any(i—n)
(2.1)
=(3nu(i-1) + Cn_lu(i-z) ¥ oo + Clu(i-n)
where Ai’ci’ i=l,...,n are a set of r x r constant matrices. The
true values of these matrices have to be estimated. The integers
n and r are assumed to be known.
Many a time both y(i) and u(i) cannot be measured exactly

for all i. Usually a vector variable z(i) can be measured such

that
z(1) = y(i) + 1(3) (2.2)
where
E[n(i)] =0
E[n(i) n(3)] = Ry S350 Rp> 0 (2.3)
E[n(i) y(G)1=0

The situation regarding the input u(i) is slightly different.

In a number of examples such as economic forecasting very little

is known gbout the inputs except that they are completely unpredic-
table. Moreover, the inputs may have been introduced solely for the
purpose of analysis and they may not have any physical significance.
In such cases, one can assume u(i) to be a sequence of zero mean ran-
dom variables, In some other examples with well-defined input-

output relationships, the input u(i) may be represented as

u(i) = v(i) + (i) (2.4)
where u(i) is the actual (unknown) input, v(i) is the (known)
nominal input that was planned for the experiment and E(i) is

the inevitable error in injecting the input.



E [£(i)] = 0

E [g(1) 5(3‘)1 = Re 8 (2.5)
E [g(i) W3)l =0

E[g(i) v(3)1 =0

It i clear that not all sequences v{i) can serve as relevant
candidates for the experiment. We shall give later the conditions
that should be satisfied by the nominal input sequence v(i) for
successful experimentation. Presently the question of the optimal
choice of the nominal input sequence v(i) among the various candidates
is open and will not be treated here.

Thus, according to the type of data available, one can divide
the linear model building problems into 4 groups where E(i), n(i)

indicates sequences of zero mean uncorrelsted variables referred to

earlier.
(2) z(t) = y(t) 3 u(t) = g(t)
(B) =z(t) = y(¢) ;5 u(t) = v(t) + g(t)
(€) =z(t) = y(t) + n(t) 5 ult) = g(t)
(D) =z(t) = y(t) + n(t) 5 u(t) = v(t) + g(t)

When y(¢) is a scalar process, problems of class (A) occur
in obtaining good approximations to spectral density functions of
y(+) [16]. 1In addition, classes (A) and (B) arise very often in
many economic forecasting problems where the idea of measurement
noise is superfluous. Classes (C) and (D) arise in all problems
with well-defined input-output relationships. Classes (A) and (C)
can be considered to be special cases of classes (B) and (D),
respectively, by setting v(i) = 0 for all i. Thus v(i) will be

set identically to zero when no information is available on it.
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The identification problem is to estimate the unknown matrices
among Aj?.;a,An? CqrivesCps Rg and R,n from the available data
{v(i),2z(1)}, i=1,...,N where N can be finite or infinite. As

before, the collection of all the unknown matrices will be denoted

by A.

ITI. THE INNOVATTION EQUATIONS
As mentioned in the introduction, the coefficients that are
actually estimated are those of the so-called "innovation" equation
relating the successive value of the prediction errors e(i,A) with
the measured output and input. This equation has been discussed in
great detail in reference [10], and hence we will briefly mention
the outlines here.

Let z(i)

1]

predicted linear least squares estimate of z(i)
given all the previous measurements z(j), j < i,
previous measured inputs v(j), J < i, and the
coefficients of the model equation (2.1).
= Arg [M%n E |lz(1) - fi(z(i-l),z(i-z),...)ﬂzl

where fi(') is a linear function of its arguments.
e(i) = innovation at instant i
= z(i) - z(i) .

One can essily demonstrate [9] that E [e(i) eT(j)] =0,

¥ # i . Thus, the innovations are nothing more than orthogonalized

measurenents.

(A) Exact Measurements of the Output Available

By definition z(i) = y(i) . In addition, c;l is assumed to

exist. The system equation (2.1) can be rewritten as (3.1)



2(t) = - E:Ajz(t-j) -

J=1 J

Cpoge (V(E-3) + &(¢-3)) (3.1)
1

n
z(t) can be obtained from (3.1) by setting E(t-1) = O since one

does not have any information on it based on the measurements

z(j), j < t alone.

n n
Aga(3) + ) O v(b-3) + ) 0y B(83)  (3.2)
51 j=2

2(t) = -

d

P~

Subtracting (3.2) from (3.1), one gets

e(t) £ () - 2(x) = &(t) (3.3)a
oY

§(t) = 7t e(t) (3.3)

The required innovation equation is obtained by substituting

(3.3)b into equation (3.1).

n n
' -1 X .
e(6) + ) €y sy o8 e(b-gr1) = 2(8) + ) A 2(8-))
j=2 J=1
. (3.2)
- z' q}.-j"'l V(t"j)
j=1
Moreover, from (3.3)a, one can show that
. Tran] L T ;
E[ﬂl)e(ﬂ]mcg%%%j (3.5)

(B) Noisy Measurements of State
z(i) = y(i) + 7(i) (3.6)
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The derivation of the innovation equation is different from the
case considered earlier and has been considered by the author in
reference [10]. Hence only the results will be mentioned here.

The innovation equation is given in (3.7).

n n
Y iy + N 4
o(6) * ) By_ypq o(t-3) + ) Cpgpq v(E-3)
j=1 3=1
n (3.7)
= z(t) + EjAjz(t-j)
3=1
Let E [e(t) eT(t)] 4 R,
The r x r coefficient matrices Bl""’Bn and Re are found by
solving the following set of algebraic equations.
H+1 i+l i
Y; T ZZ T j; T
L BandePe = L Cuiande T L APk (3-8)
k=1 k=1 k=0

i=0,2, soey

where

>
>

0O,B.,.2I and A =1

ml ntl 0

The equations (3.8) can be rewritten in matrix notation.



T 1 -t T
Bre1 Re{ By {Cnﬂ. Rel €1
T
Bn Bni'l . Cn Crﬂ-l CZ
Bn-—l Bn Bn+l . = C’n—l Cn Cn-l-l
T A T
B, B, By --eBl B | Lcl Cpv v oo Chq ?
- i s
AO An
T
+ Ay AO R,n An--l
. (3.9)
A, A A, )
T
8 g e ol LAy |

’
An iterative scheme will be mentioned below for obtaining Bis

and Re from Ai,Ci,R and R,n, @ with k denoting the iteration number.

€
-1 w
k-1
A (57
i-1 i
: T T
= c
() FReCn-ir1ry * ) Aacger Baficg g
j=1 j=1 (3:10)
i-1
k-1 (k-—l) g1 ( k-1
"L BJ Re n1+3+1)] R )
J=1
i=2, ss0y n
V

s

n
R§=-§B§“Rk (B; T YCR cT+§A

L n+1l-j nAm-l-J (3.12)
J=1 J=l J—l

1
e
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The iteration scheme in equations (3.10) and (3.11) is based

on a set of difference equations in Bi(t) from which the algebraic

equations (3.9) were derived [10].
IV. THE LIKELIHOOD FUNCTION

The conditional probability density p(z(i), ««., 2(N)/v(i), ..., v(N-1);
A will be computed assuming the noise sequences T(i) and £(1) to be
Gaussian with the second order properties mentioned earlier. On
account of the latter assumption, the linear least squares estimates

z(i;A) equals the conditional mean of z(i) mentioned below.
2(130) = E [2(1)/2(3), 5 <1 v(3), 3 <1; A]

Let e(i38) = 2(i) - 2(i;4)
It has already been mentioned that

E [e(i,A) eT(j,A)] = Re(A) aij

Hence
p(z(1)/2(3), 3 <1 ; v(3), § <1, A) ~N(z(4,4),R,(A))
H nce
p(z(1), ..., 2(N)/v(i), ..., v(N-1);4)
=j§l p(z(3)/2(1), ..oy 2(3-1); v(1), ..., v(N-1); A)
N
" (2n) 2 !lRe(A)lN/ 7 sl %i;”e(m)“i;l(‘*)]
Let

N
o =k ) “e(j;A)“i_l(A) + 2 an 1R(2)] (4.1)
j=1 e
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Thus the estimate of A obtained by minimizing JN(A) with
respect to A with the variable e(j;A) obeying the difference
6quatich (3.4) or (3.7) is the same as the so called "unconditional"
maximum likelihood (ML) estimate of A.

By Walds theorems {13-1L) the ML estimate of A will
tend to the true value A* with probability one as the
number of measurements N tend to infinity if the conditional
density function of the measurements satisfies the assumptions
(1) - (8) of Wald's paper [14].. If these, the only assumption
of interest in the present context is assumption 4 which

states that

p((1)er 2@/ ) £ pD,..L, 0 2y (1), (2)

for at least one value of z(1),...,z(N). The rest of the
assumptions are automatically satisfied here. It is natural
to discuss the conditions that need be imposed on the system
to assure the validity of the above assumption. These
conditions can be obtained by inspection of the innovation

equation (3.4) or (3.7). Throughout this discussion RW >0

Tha

(positive definite) and/condition R, > O is imposed only

g

O for all i.

1

ifv{i)
In systems of class (A), v(i) =0 and z(i) = y(i).

The innovation equation (3.4) reveals that one has to know

Cn and this should be nonsingular. These conditions permit

the remaining coefficients Al’ An’ Cl""’ Cn-l and RF to be

estimated.

In systems of class (B) C1sCpsev+sCps ApseessA 5 R
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can be estimated as long as the input seguence v(i),

i=1,2,.... repeatedly span all the directions of the

r-dimensional space. If v{(i) is a scalar, this v(i) # 0

is a sufficient condition. Of course Cn must be nonsingular.
In problems of class (c), z(i) = y(i) + (i) and

v(i) = 0. 1In this case, the innovation equation (3.7)

does not explicitly involve the coefficients Ci’ i=1,.0e5n.

i

Mbrquer, there is no unique way of specifying Rﬁ- Hence, one
H

can get RE = I without any locss of generality. Since these
identificétion schemes determine only the coefficients of
the innovation equation (in this case the A;sB; 1= 1,0005n
and Re), it is necessary to impose additional conditions so
that ohe can uniquely recover Cl""’cn and Rﬂ from the
coefficients Ai,Bi, i=1,.0.,n and R, To do this, one

has to consider a scheme for computing the coefficients Ci
and Rﬂ recursively from the algebraic equation (3.9). As

before, k will stand for the iteration number

_ T .1
Rn =R, Bl A (4.2)
i+l i+l
T
[ z n+l-j " " i+l-j * Z BJ Re Bn-1+3
=t (4.3)

with the definitions



Hence,; in addition to the nonsingularity of Cn’ one requires
A;l to exist. This means that all the individual difference
equations in the system (2.1) must be of the same order. If
A;l does not exist, there is no unique way of recovering Ci
Rn from Ai’ Bi’ and Re'

In systems of class (D), z(i) = y(i) + n(i) and the
innovation equation (3.7) involves all the parameters Ai’ci’
i=1,...,n explicitly and Rﬁ, Rﬂ implieitly via Bi‘s. Thus,
the exact identification is possible if the input v (i) can
excite all the "modes" of the system. In otherwords, if
every set of n consecutive inputs with v{i) as a leading
member is rearranged to form a column vector, say 7&(1), then
the sequence (i), 7(2),... must repeatedly span all the

directions of the nr dimensional space.

V. ALGORITHMS FOR MAXIMUM LIKELIHOOD ESTIMATION

This section will deal only with the systems represented
in equation (2.1). The problems of classes (A),(B),(C) and
(D) naving different types of input-output information will
be treated separately. The noises £(i) and n(i), when
referred to have the properties mentioned in equations (2.3)

and (2.5). The matrices to be estimated are among Ai’ci’

1

i=1,...,n, R_and Rn. The available data is {z(i),v(i)},
i = l,l..’N'

(A) Problems of Class (A)

Here z(i) = y(i) and (i) = 0. Since C, is assumed to be
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nonsingular and known, one may as well set Cn = T. The
unknowns are Al""’An’ Cl""’Cn—l and RE' For ease of

rotation, relabel Ci and R_ as follows:

g

C. 3 i=l]o--,n-l

The innovation equation is

n
e(t) + z Azn_j+le(t—j+l) = z(t) + ZAJ. z(1-3)
i=2 j=1

i pan Ty
E{e(i)e" (3) = Ay, Sij

The criterion function is

1

J(a) = il

@, «5 miayl

J= 2n

1=

Minimization of J(A) subject to the differential
constraint (5-1) is a standard problem in the minimization
theory. One can solve it numerically either by a first order
gradient method or, preferably, by the conjugate gradient
method [lé} since with a little increase in computation,
one gets a considerable increase in the reate of convergence.
The computational scheme is given below involving four steps
with the letter k in superscript denoting the iteration

number.

(5.1)

(5.2)
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(i) With the given A? solve for the difference equation
(5.1) for the prediction errors e(t), t = 1,...,N. Minimizing

J(Ak) with respect to A, one gets the following estimate

2n
for A2n'
N
k1 T
Ar = F Z e(t)er (t)
t=1

(ii) Let us compute the gradient matrices

N
T
oJ 1 de (t -1 .
g('A—) = 3§ Z e A2n e(t) i=1,...,2n-1
ljp t=1 ljp Jsp = Lyeee,r

By differentiating the innovation equation with respect to

(Ai) , one can compute the partial derivatives ae(t)/a(Ai) .

37 Jp
k
5 A OJ
Iet £
OA;  OA; lA. = A%
i i
k+1 k (x) .k
(iii) AT =A" o Py
ﬂ{ ,'a.\]k (k) "‘l 5 i = l)o'c,zn"l
io=-gr e E
i
where B(k) and o(k) are scalars.

(k)

The gain o is chosen to maximize the di fference

| 3(a%y _g(a¥) |
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2n-1 (k1)
(k . T k+1
o) - ig; ! S ” A
ZTRR ) s fhaf=mr(ama)
L MR
i=1

The initial values of Pi are

ol -t
i T oK

(iv) 1Increase k to k+l and go to step (i).
By setting B(k) = 0 in the above computation one gets fre

gradient method.

(B) Systems of Class (B)

Here z(i) = y(i) and satisfies the conditions mentioned

in section IV. The unknowns are Ai, Ci’ i=1,...,n and

R.. The algorithn is very similar to that in section (4)

g
and hence will be skipped.

(c) Systems of Class (C)

Here z(i) = y(i) + n(i) and v(i) = 0. As mentioned

earlier one can set R_ = I and assune An to be nonsingular.

.

The unknowns are A ""'An and C

1 C . The innovation

l;..., n

equation is

n n
e(t) + ) B s e(t-3) =2(8) + ) A 2(t-))

)
=1 =1

with E(e(t)eT(t)) = R,
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The identification procedes in 2 steps.

(1) Estimate the coefficients A,...,A ; B ...,B

1" n

and R_ by using the method outlined in Part (A) of this

~ L

section. ILabel them as A .A "'°’An’ B

170 :-“:Bn and ReJ

1
respectively.

(ii) The estimate ﬁr of RQ is given by (4.2)
1

- 4

P PPN |
RQ =R, B, (An)

The estimates 6 ;00+35C of C.,...,C_ are obtained as the
1 n 1 n
steady state solutions of the recursive (4.3) with Re,

A

Ai’ Bi replaced by Re Ai’ Bi respectively.

(D) Systems of Class (D)

Here z(i) = y(i) + n(i) and u(i) = v(i) + g(i). The
input v(i) obeys the conditions mentioned mentioned in section
IV. The unknown matrices are Aig Ci' i=1,...,n and
‘R, and Rn- The innovation equation involves all the

g

parameters Ai’ Ci’ i=1,...,n and is given below

n n
‘ . Ay :
e(t) + ) B i e(t-3) ¢ Y C . v(t-))
j=1 j=1
n
= z(t) + z; Aﬁ z(t-3j) (5.8)

J=1

where the coefficients Bi' i=121,...;n and Re obey the

algebraic equations (3.8).
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Let

&
A2n+l Rg

The criterion function is

N
38y = 355 ) le) ni_l + 2 m|R_|
3=1 ¢

The scheme: is very similar to that of part (A) of this section
and consists of the following steps

(i) Using the given values of Agk) and Bj(_k) evaluate
e(t) for all t = 1,...,N from (5.8).

N
k T
R, = § Z e(t) e (t)
J=1
(ii) Evaluate aeAt). for i =1,...;2n+l; j,p=1,...,7;

i‘jp
by differentiating the equation (5.8) with respect to (Ai)jp

for all i, j and p. During this process, one needs the

partial derivatives of all the elements of B with respect to
every element of A. This can be obtained directly by
differentiating equation (3.8) or recursively by differentiating
equation; (3.10). .Thus, one can compute the

gradient matrices BJ/ESA:.L ,i=1,...,20+l.

(ii1) A1;+1 - Aik . p(k) Pi(k) i=1,..0,2n%1

(x)
k _ 3d (x) 5 k-1

where the scalars p(k) and 6(k) are compu%ed‘ as in part (A) of
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this section.

(iv) Using A§+l, Rg and ﬁ. , compute B(k +1) | using
(3.10). Compute Rk+l by modifying (3.11) as follows
n+l
k+l k+1 Y’ k+1, k +1.,T
n+l -3 n An+l -3 * L.Bj 1Re (B§ )
J=1

k+1 T
Cj A2n+l J

i
L] [
s

J

(v) Increment k by one and go to step (1).

The computational scheme may be simplified in many
respects. When the mean square value of i) is much greater
‘than RE then we can neglect the effect of the partial
derivatives of the elements of Bi with respect to those of
A; altogether. When the mean square value of v(i) is
comparable with that of Rg’ we may not neglect these partial
derivatives, but they may not vary much from iteration to
iteration and hence, it is enough if they are computed once
in many iterations. It mayvbe also worthwhile to look into
the methods of optimization which do not explicitly compute

the gradients.

VI. ON-LINE IDENTIFICATION SCHEMES
The maximum likelihood estimation ideas will be used
in conjunction with stochastic approximation to develop on-
line computing schemes. Instead of handling every measurement
individually, batch processing will be performed as it

reduces the amount of computation in many problems. Every
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batch has a finite number, say m, of measurements. The
k® patch contains the measurements {z(i),v(i)}, i = (k-1)m+1,
R

Iet A denote the matrix of parameters to be estimated
and e(t,A) denote the predicted error computed from the
innovation equation using the actual measurements z(t) and the
parameter A. Assume that z(t) and e(t,A) are Gaussian
stationary processes. Consider the criterion function J(A)

(k+1)m

s =5 2 ) letmi1gy + mIR @) ] ]
t=kme1 €

A
= B £(t,4)

where Re\the covariance matrix of e(t,A){is a function of A.

As demonstrated by Wald [14], one has

J@°) <J(a) %A 44
On account of the smoothness properties of J(A) one can write

O0(8) _ o (a,8°) ofla-a"])

where g(A,A°) is a positive scalar function and v () is
a montonically increasing function pf the argument. In view
of (6.2), the following inequality is valid for all values

*
of A in some neighborhood around the true value A .
2 2
52—l < k, (1+ 1a]f%) , k, >0

One gets the following algorithm by applying the Robbins
1oJ)
Munro scheme for finding the zero off the function E(g%};

(6.1)

(6.2)

(6.3)
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k1l _ k (k) 3f(t,4) |
A = A, - p Bl AN LY (6.4)
* * aAi 'A:Ak

where p(k) is a scalar sequence such that

Yo coo ema Y (%)% <oo (6.5)
k k

From Gladyshev's theorem [11], and equations (6.2)-(6.5) it follows
that A? tends to the true value Ai both in the mean square sense and
1ith probability one. It should be noted that if condition (6.3) is
satisfied, we do not need any independence assumptions'on the
correction terms used in the stochastic approximation scheme of
equation (6.4). As in all stochastic approximation procedures, the
mean square error of the estimate is inversely propértional to the
numbef of measurements processed.

The details of the computation will be given for problems of
the classes (A) and (D). The others are omitted since the methods

are similar.

(#) sSystems of Class (A)

~

The unknowns are Ai,i=1,...,n. Ah+i A Ci’ i=1,...,n-1 and
A _ . .
AZn = Rc. Let Cn = J. The algorithm is
(x) =

1  k KL v 3 2 3
a5 = a7 - W2 2 fle(e)P_; + < znlAZH!]

i i

t= 2n
(k-1)m+1

i=l, s ey zn-l

O ] e - 4]
t
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The auxiliary equations for computing e(t) and its partial

derivatives are given below

n n

T Lk . Sk s
e(t) + )} Ay 5 o(t-3) = 2(t) + ) Ay 2(%-3)

j=1 =1

n n
Ae(t L de(t-3) 2\‘_ Ay 2(t-3)
A, 2n-3+1 3(A, 3R
PMhilpg L eI olhiIpg o1 i'ma

Y
- z a in—;}*'l e(_t_j) l=1,..-,2n
= i'pa Pya=l, eee,

(B) Systems of Class D

A = A
The unknowns are Ai’ ""An’ ; 5 A 12 i=1,...,n, R§ = A2 12
A . . . . . :
RE = Az 2 and R,n. The algorithm is given in the following 3 steps.

(i) From the given values of AI;, i=1,...,2n+2 and Rl,; -1

compute Bl;, i=1,...,n from the equations (3.10). Update R%;‘

using the equation given below which is a modification of (3.11).
2n

k—l(k )T Y Ak k (A )'l‘

k _ zk
B = = LB B WBpap) -/ A5 Ao

(ii) The error e(t) is evaluated recursively

J==l J=1

S Lk .
= z(t) + ) Aj z(t-3)
J=1
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One can recursively compute the partial derivatives of e(t) with
respect to A, for all i=l,...,2nt1 by differentiating the e(t)
equation and using the partial derivatives of all elements of Bi
with respect to Aj for all j. The latter partial derivatives can

be obtained by differentiation of equations (3.10).

(iii) Update the values of Agk) as follows:
(k) <
el k (k)L T 3 2 3 ]
R F Dl SO A8, mldy el
t= ent2

(k-1)m-1
i=1, .00, 2001

1l .k (x) sz i K ]
Bopez = Bopep = P |5 2 e(8)e(8) - Ay o
%

The bulk of the computation occurs in step (ii)c Th e batch
processing of data helps in the reduction of the partial derivatives
to be evaluated. Rcgarding the partial derivatives of the elements
of Bi with respect to those of Aj’ all the comments made earlier in
part (D) of the section V are also valid here. When r is large,
the demands on the computer may be heavy since for fixed n, the amount
of computation is proportional to r3. But there is no way of getting
around the problem if there is both process noise and measurement
noise and one insists on measuring all the noise covariances and
coefficients of the difference equation. Of course, the amount of
computation is greatly reduced if the input noise £ were absent
since Bi = An_i+l and hence the partial derivatives of Bi with

respect to Aj can be written down by inspection.
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VII. EXAMPLES

(A) Maximum Likelihood Estimation of a Third Order System

A single input-single output system obeying the following

difference equation will be considered.

y(1) + ay(i-1) + ay(i-2) + aBy(i—B) o
- c3§(i‘l) + cgg(i—E) + 05§(i"5)
z(1) = y(1) + n(2)

No information is available on the input £(i) except that
it is zero mean. As before, one can get rg, the covariance of
noise £(i), to be one. The unknowns are al,ag,at?),cl,c.g,c:5
and r , the covariance of the uncorrelated noise n(i). The only
available measurements are {z(i), i=1,...,N}

The computational method mentioned in section V(C) can be
used here. However, since the output z(.) is a scalar, one can
easily write up a second order gradient method without much effort
for carrying out the minimization process. The results are given.
in figure 2 and table 1. In figure 2 the ML estimates of the
seven parameters are graphed against the number of samples N. This
figure shows how the ML estimates approach their true value as
the number of samples become large. In table 1 the number of samples
are fixed at some number, say 400, and the estimates obtained during
the minimization process are tabulated against the muxber "of
iteratiohs. As can 'bte séen from the table, most of the minimiza-

tion is performed in the first iteration itself.

(B) On-Line Determination of the Noise Statistics

Consider the following scalar input-scalar output system



Table 1.

Results of the Iterative Procedure for Computing

the MI; Estimates.

at the value 400.

The number of samples is fixed

Tteration
Nuniber &1 82 3 1 €2 €3 *
0 0.5 0.5 0.5 [0 0 1.0 -
1 0.617 .5388 |-0.3493 {-.0954 | -0.0842 | 0.9910| 0.5700
2 0.6203 | .5025 {-0.3671{-.1246 | -0.0455 | .9962| 0.5437
3 0.6211 | .4926 |-0.3700 |-.130k4 | -<0370 | 1.003 .5ﬁ20
4 0.6196 | .4888 {-0.3T71k|-.1322| -.0367 |1.005 5419
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y(1) + ) ey y(tg) =" 5(t-3)

J=1

cn-j+1
z(i) = y(1) + n(1)

i} is zero mean, uncorrelatzd process, not accessable for
- 5

measurement. Without loss of generality, set re = 1. The

coefficients a.,+¢+.8 ,C. 5.
1’ R i

r, of noise 7(i) is unknown. This will be estimated on-line

Ll

from the measurements z(i). The innovation equation is

-eycp are known. Only the variance

n n
e(t) + Ejbj e(t-j) = z(t) + Eﬁaj z(t-3)
=1 =1
200 N . .
Let Ele (t)] = r,. The coefficients by,...,b, r, and Ty
and unknown since they depend on r Let re(t) and.bi(t) be

h

.

estimates of re,bi at the tt instant. Then the algorithm can be

written as follows using t both as the time and iteration index.
n
s
)

y a. z(t-3)

e(t) + ij(t) e(t-3) = 2(t) + ) a,

j:l J:]_

The recursive equations for bj can be written down from (3.10)

bl(t) =a_ r“(t—l)/re(t-l)
i-1 i
1 N ¥
by (t) = r_(£-1) [ L %5 Cneirirg T z,an—j+1 rolt-1) 2y g
j=1 =1

(t-1)

bj(t-l) re(t-l) bn~i+j+l

[N =%
i -1 1
[ & 1 ol



-26-

The equation for rn(t) can be obtained by modifying (3.11).

n nt+1 n
=2 g2 N 2 A1) =) o8
r,n(t) == /) %1 r,n(t-l) + ) bj(t) re(t 1) - c3
j=1 j=1 j=1
1 ;.2
r(t) = r (t-1) + § [e°(t) - r (%-1)]

This completes the identification algorithm.

One can show [10] that the approximate value of the best estimate
of y(t) given z(1),...,z(t) can be written down as follows

. rn(t) e(t)
y(t/t) ~ z(t) - T

VIII. DISCUSSION

While comparing the existing methods of identification [1-8]
with those of this paper, the following aspects of our algorithms
should be mentioned.

(i) With limited number of measurements, the maximum likeli-
hood estimates of the various parameters including the noise variances
are computed. One can rarely do better than this. One can get a
measure of the variance of the estimate.

(ii) The identification is possible even if there are no
input measurements.

(iii) The method handles vector measurements also.in a
similar manner.

(iv) The noise in the output N(i) need not be uncorrelated,
It can have finite correlation time (with unknown covariance

function).
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(v) The algorithms present a convenient method of computing
good approximations to the spectral densities of stationary processes
on the basis of the observed samples by assuming that they obey a
model of equation {2.1). However, a rigorous comparison has not
been made with the traditional methods [16].

It has already been mentioned that the on-line identification
schemes present a method of optimal filtering with disturbances of
unknown statistics. The computational aspects associated with the
on-line schemes have already been montioned. Iurther, no stability
studies are available on our algorithms. But the experimental results

are promising,
IX. CORCLUSZONSG

The problem of identifying th~e coefficients and the noise
variances of a discrete linear system on the basis of noisy input-
output measurements or output measurements has been reduced to a
standard parameter minimiZzation problem with difference equations
as constraints. The criterion function is the sum of the squares -
of the optimal prediction ervor' and this can ve interpreted as the
likelihood function with Geussian disturbances. Optimal estimates
of the parameter! are derived when the number of measurements is

limited and for various types of input-output data.
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